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Abstract. An action generated by a 2×2 real matrix is described. It is a 

simply transitive action, and characterizes a gauge proper, connected to the 

matrices representing stresses in a continuum. More than this, such a gauge is 

also related to a possible superstatistic of the Cauchy type. The geometry related 

to this gauge is a three-dimensional generalization of the plane hyperbolic 

geometry, from which it can be actually obtained by a Bäcklund transformation 

involving the gauge angle. In real terms this geometry is a Lorentz three-

dimensional geometry. An interesting physical interpretation results for the 

gauge angle. Moreover, strong connections with the Kuznetsov model for tumor 

growth can be established. 
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1. The Binary Cubic: Meaning and Notations 

 

Cubic equation is the basis for constitutive laws as we accept them 

today, inasmuch as it allows us to algebraically characterize a 3×3 matrix, 

regardless if it is a tensor or not. The following treatment refers to the most 

general form of cubic equation having real coefficients. These coefficients are 

orthogonal invariants in the case of a 3×3 matrix which is tensor with respect to 

orthogonal group of space, and therefore they bear physical meanings. We 

accept the extension of these meanings in general, i.e. regardless if the matrix is 

tensor or not. The cubic equation will be written, for convenience, in the so-

called binomial form as 

 0axa3xa3xa
32

2

1

3

0
  (1) 

 

Here we assume that the coefficients ak are real, displaying by a0 the 

possibility of adjusting them by an arbitrary factor on account of the known 

arbitrariness allowed by the relations between the roots and the coefficients of 

an algebraic equation. 

 
2. The Algebra Related to Cubic Equation 

 

The central problem related to Eq. (1) is, of course, that of finding its 

roots. These are the eigenvalues of the corresponding matrix, and are usually 

supposed to be accessible to measurement. There are many methods for the 

general solution of this problem, conveniently coping with the purpose which 

that solution is serving (Cocolicchio and Viggiano, 2000; Nickalls, 1993). All 

of the methods of solution are however centered on reducing it to that of a 

quadratic equation and, for physics purposes, we think it is worthwhile 

revealing what this actually entails. The most general theory behind the 

procedure has been established by Sylvester (Burnside and Panton, 1960) and 

amounts to putting the Eq. (1) in the form of a sum of two perfect cubes: 
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In this case the equation can be easily solved to give 
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where we denoted 
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i.e. j are the cubic roots of the unity: 
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The problem of solving the cubic equation is thus translated into that of 

finding the quantities α1, α2, β1, β2 from Eq. (2) as functions of the coefficients 

a0, a1, a2, a3, which are usually related to physical situations. This can be done as 

follows: identifying the Eqs. (1) and (2), gives the following system of equations 
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Now, we always may assume that α1 and α2 are the roots of a quadratic 

equation, which we write in the form: 
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This equation entails the natural identities 
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which we try to put in relation with the system of Eqs. (5). For instance, we can 

obtain one equation by multiplying the first of the Eqs. (6) by β1 the second one 

by β2 and then adding the results. The coefficients of b0, b1, b2 in the new 

equation are given by a0, a1, a2 from (5). Likewise, another equation may be 

obtained when multiplying the first of the Eqs. (6) by β1α1, the second one by 

β2α2 and then add the resulting equations. The end result for this procedure is 

the following system of equations for b0, b1, b2: 
 

 

0bababa

0bababa

211203

201102




  

 

This system has the solution defined, up to an arbitrary factor, by the 

equations 
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showing that α1 and α2 from (2) are the roots of a quadratic equation: 
 

 0= )aa(a +x )aaaa(+ x)aa(a 2

2312130

22

120
  (7) 

 

called Hessian associated to the cubic Eq. (1). Now we must find β1 and β2 from 

(2). For this we can use any pair from the four Eqs. (5). The result is the same 
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up to a factor. Because we actually need only the ratio β2/β1, we can however 

use another, more direct method (Vodă, 1987), having the advantage to exhibit 

straightforwardly the algebraic nature of β1 and β2. Namely, denoting the cubic 

from Eq. (1) by f(x), and using the Eq. (2), we find 
 

  )   (  = )  ( f,)   ( = )( f
3
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whence the ratio between β1 and β2 is given by equation 
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Therefore β1 and β2 are of the same algebraic nature as α1 and α2, 

because the coefficients of the cubic are real. Thus, the solution of a cubic 

equation can, indeed, be reduced to that of a quadratic equation. Here the 

quadratic in question is the Hessian of the cubic. In some other methods of 

solution we might have some other quadratic, but it will still be in close 

relationship with the Hessian. 

The relation between cubic and its Hessian can be summarized by the 

following three general theorems: 

Theorem 1. If a cubic has the Hessian a perfect square, then such a 

cubic contains the Hessian as a factor. 

Theorem 2. If the Hessian of a cubic equation has distinct roots then 

the cubic itself has distinct roots. There are thus two cases: 

a) if the Hessian has real roots, then the cubic itself has one real and 

two complex roots. 

b) if the Hessian has complex roots, then the cubic itself has real roots 

Theorem 3. If a cubic is a perfect cube, then it has a null Hessian. 

Reciprocally, if a cubic has a null Hessian then it is a perfect cube. 

It is therefore important to introduce the distinguished quantity, playing 

an essential role in the theory of cubic equations. This quantity is the 

discriminant of the Hessian of a cubic, also called the discriminant of the cubic 

itself. In view of Eq. (7) it is, obviously, given by 
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and deserves this name because, like in the case of the quadratic equation, it 

decides the algebraic nature of the roots of cubic equation. For instance, the 

second of the theorems above can be directly proved just considering the form 

(3) of the roots of the cubic. The first theorem, and the third, can be proved 

using Eq. (9) in the special cases to which they are referring. 
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3. An External Gauge Factor 

 

As one can see from the above presentation, the Hessian of a cubic is a 

key tool in constructing the roots of that cubic. Sometimes, in practical 

problems, the physical principles even allow us to know the Hessian before we 

know the cubic itself, and in such cases we need to figure out the corresponding 

cubic, more specifically to construct the roots of this cubic. One can guess that 

such situations currently occur in the case of nuclear matter, and this should be 

indeed the case if judged from a group-theoretical point of view. 

 The previous development of the theory of cubic equations shows that, 

given the roots of the Hessian only, one cannot know the corresponding cubic 

equation without ambiguity. In fact the Eqs. (2) and (3) show that to a given 

Hessian there corresponds a one-parameter family of triplets of numbers, each 

one of these triplets representing a given cubic equation. This indetermination is 

independent of the known property of indetermination allowed by the relations 

between roots and coefficients. As a matter of fact, it is even deeper than the Eq. 

(2) shows it, in the sense that the ratio k, which by Eqs. (4) and (8) depends 

only on the quantities related to the cubic equation, may hide in itself an 

external phase completely independent of the cubic equation – a gauge phase. 

 This observation and the algebraic proof that follows are due to Dan 

Barbilian (Barbilian, 1971). In order to better grasp the nature of this problem, 

we use the following identity between cubic itself (f), its Hessian (H) and its 

Jacobian (T): 

 223 TfH4   (10) 
 

The expression in right hand side of this equation can be decomposed 

into two factors each of the third degree, because the cubic and its Jacobian are 

prime with respect to each other. On the other hand, the left hand side is a 

product of two perfect cubes, because the Hessian is a quadratic polynomial. 

The identity (10) then shows that each factor of the right hand side is 

proportional to a factor of the expression from the left hand side, and this 

proportionality can be taken in two ways at will. However, for a fixed choice 

between those two ways, the proportionality factors should be reciprocal to one 

another. Indeed, the Hessian can be factorized in infinite many ways as 
 

 
V

m

1
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where U and V are first degree binomials and „m‟ is any nonzero number. Thus 

the identity (10) can be written as the system 
 

 3333 Vm2Tf,Um2Tf   (11) 
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Adding these expressions, gives the result (2) only in a slightly different 

form, showing clearly where the external arbitrariness comes into play: 
 

 3333 VmUmf   (12) 

 

One can further decompose the right hand side here into linear factors, 

to the effect that (12) becomes 
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This form allows us to find the roots of the cubic equation f = 0 in the 

form given by Eq. (2) with k ≡ m
-2

. In case the roots are all real, k must be 

complex unimodular as before. For the sake of completeness, we mention that 

the Jacobian of a cubic can be also obtained from (11) as a difference of cubes: 
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This shows that the roots of Jacobian are of the same algebraical nature 

as the roots of the cubic itself. In formula (3) we do not have to change but the 

sign in both the denominator and numerator in order to get the roots of the 

corresponding Jacobian. This discussion also shows that the form (3) of the 

roots of a cubic equation is valid independently of the nature of the roots. 

 
4. A Physical Interpretation 

 

It is now important to give a physical interpretation for the external 

factor k occurring when one wants to construct the cubic given its Hessian. For 

this we will consider the case where the cubic has real roots, i.e. k is complex of 

unit modulus. The Eq. (3) for the roots can be written as (Barbilian, 1938). 
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 (13) 

 

with h, h
*
 – the roots of Hessian and   (– 1 + i3)/2 the cubic root of unity 

(i  (-1)). Now consider the vector of components x1, x2, x3. This is a „vector‟ 

indeed, but with respect to a special group to be mentioned later. For now, it 

just happens to represent a real space situation when the three roots are the 

principal values of a symmetric matrix. We are certainly correct in using this 

image, at least in a limited way, for there is a space reference frame we can 

construct in every point of space where the symmetric matrix is defined. This is 
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given by three special orthogonal vectors – the principal directions of the 

symmetric matrix in question. Thus the principal values of such a matrix can be 

arranged in the column matrix 
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which is plainly a vector in matrix representation. Indeed each principal value 

of the matrix can be interpreted as the component of the vector along the 

corresponding principal direction. 

 We can decompose the vector from (14) with respect to a plane cutting 

the axes of reference frame in the points situated at unit distance from origin. In 

engineering applications such a plane is called octahedral plane, for it 

represents one of the faces of an octahedron in space. Assuming therefore the 

situation in the first octant of our reference frame, the normal component of the 

vector (14) on this plane is, with an obvious notation for transposed vectors, 

given by 
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The in-plane (tangential) component of (14) is then given by 
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It is this last vector, usually called octahedral shear vector in 

engineering applications – its components are given by the eigenvalues of the 

so-called deviator of the original matrix – which allows us to interpret the 

complex number k externally introduced. Namely, the Sylvester form (2) of our 

cubic allows us to identify its binomial coefficients in terms of the quantities h, 

h
*
 and k, up to an arbitrary factor, as 
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From this we have right away 



32                                                         Irina Butuc et al. 
 

 

 





































)1k(

)1k(

1k

k1

k)hh(
x

k1

khh
x

3

1

22

3t3

3

1  (16) 

 

Now take as reference in the octahedral plane the vector corresponding 

to k = 1, when the roots of the cubic are exclusively determined by the roots of 

its Hessian, therefore with no arbitrariness whatsoever: 
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Then calculate the angle of the generic tangential vector with respect to 

this one by the well-known formula: 
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Using Eqs. (16) and (17) we get 
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so that Eq. (18) becomes 
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k

1
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1
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We conclude that, indeed, knowing the Hessian does not determine the 

cubic uniquely. In the case of a cubic with real roots the Hessian actually 

determines a family of cubics whose roots are defined as a one parameter 

family. The parameter of this family is given by the angle of orientation of the 

corresponding octahedral shear vector in the octahedral plane. 

 

5. Novozhilov’s Statistics and the Specification of Hessian 

 

The advantage of this last approach to characterizing the cubic equation 

is mostly physical: as mentioned before, more often than not in physics and 
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engineering problems we have to do with quantities qualifying as coefficients of 

the Hessian of a cubic function. In this case one can rightfully say that the angle 

 represents, properly speaking, a gauge freedom. Until a proper geometrization 

of this statement, let us see however how the Hessian can be built, by using 

again an example from the deformation theory (Novozhilov, 1952). As the 

Manton‟s geometrization of Skyrme theory allows us to infer, this construction 

should be proper in the realm of nuclear matter. On the other hand, it is perhaps 

worth mentioning that the deformation of matter, in general, can be properly 

represented, from a physical point of view, as a gauge process. 

 The statement that we can measure a certain multidimensional physical 

magnitude in a certain point of space envisions a highly idealized situation. First 

of all we are not always able to simultaneously measure multiple physical 

quantities, in view of the fact that these may interact in such a way that their 

measurements are mutually exclusive. A well known example is the one of the 

conjugated variables in quantum mechanics. Nevertheless, we shouldn‟t go that 

far with the imagination, for the most obvious example is in the very 

deformation of a continuum. Indeed, while from experimental point of view, we 

can afford adequate pieces of matter to represent ideal states of deformation as 

close as possible to the standards we desire, inside a continuum the situation 

changes drastically. One cannot state that in a certain point of that continuum 

there is a precise state of deformation of a kind or another. The most we can think 

of is a mixture of such states, and even that is a highly idealized situation, for we 

don‟t know how the states of deformation coexist with each other. But, in the 

cases where the deformation is thought in terms of 3×3 matrices, the reason can 

always be conducted along the lines that follow, indicated by Novozhilov. 

 A matrix quantity defined in a point in space cannot be measured but by 

its intensities along directions and in planes through that point. The values of 

these intensities obviously vary with the direction and plan of measurement. 

However, in a continuum, one can assume that, at least in certain conditions of 

isotropy, the local manifestation of a matrix quantity is a certain average over 

all of the possible directions and planes through a point. When the matrix is a 

symmetric tensor, as one currently assumes in the theory of deformations, and 

furthermore, when one admits a uniform distribution of all directions and planes 

in space, the averages over directions and planes can be given quite easily. 

 If x is our matrix, having the eigenvalues x1,2,3, then the intensity along 

a certain direction given by the unit vector n̂ , can be calculated with the 

formula 

 23
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)n(x)n(x)n(xnnxx   (20) 

 

where n
1,2,3

 are the components of the unit vector of direction in the proper 

system of eigendirections of x. Then we can figure out that, in each one of the 

space points, a continuum can be characterized by an average of this quantity 
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over the unit sphere. Representing the components of n̂  in terms of spherical 

angles as usual: sinθcosφ, sinθsinφ, cosθ, one can assume therefore that the 

continuum exhibits in any point the mean 
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Performing this operation in (20), gives the well known value 
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On the other hand, if n̂  is the normal to a plane through a point inside a 

continuum, we can calculate the intensity of x on this plane, according to the 

formula representing Pythagoras‟ theorem 
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Using the same procedure of averaging, we can find the point average 

of this quantity in a point of the continuum: 
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It is therefore to be expected that, in a continuum without 

inhomogeneities, when it comes to the measurement of a tensor, we only have 

at our disposal the quantities (21) and (23), in any of its points. And from these 

two quantities we ought to construct the eigenvalues of the tensor. Obviously 

then, the tensor is not uniquely defined. Even if the eigenvalues would be at our 

disposal, we still would have at least the arbitrariness of space rotations in the 

definition of a tensor. However they are not at our disposal, and we ought to 

construct them first, using just the quantities (21) and (23). 

 In order to do this, we use the previous phase freedom, whereby the 

case of null phase is well determined by these two quantities. Specifically, in 

that case, which we take as a reference case, we have for the roots of Hessian 
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One can see that the imaginary part of h is simply proportional with the 

magnitude of the shear vector in the octahedral plane. Therefore the orientation 

of this shear vector in octahedral plane is arbitrary, and this is our gauge 
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freedom. With these results, the formulas from Eq. (13) define a one parameter 

family of cubics, corresponding to the rotations of the shear vector in its 

octahedral plane. 

 

6. Barbilian’s Differential Geometry 

 

However, having now concentrated on the pure mathematical side of 

the problem, we ought to consider one further algebraic advantage: the values of 

variables h, h
*
 and k can be „scanned‟ by a simply transitive continuous group 

with real parameters. Therefore the gauge freedom is way richer than the 

arbitrary phase lets to be seen. This group has been exhibited for the first time 

by Dan Barbilian (Barbilian, 1938) with the occasion of a study of the 

Riemannian space associated with the previous family of cubics. We will briefly 

review Barbilian‟s theory insisting on some particular technical points 

necessary for our reference. The basis of approach is the fact that the simply 

transitive group with real parameters (Baker, 1901). 
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where xk are the cubic roots previously discussed, induces a simply transitive 

group for the quantities h, h
*
 and k, whose action is: 
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which will be called Barbilian group. The structure of this group is typical of a 

SL(2, R) one, which we take in the standard form 
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where Bk are the infinitesimal generators of the group. Because the group is 

simply transitive these generators can be easily found as the components of the 

Cartan frame (Fels and Olver, 1998; Fels and Olver, 1999) from the formula 
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where 
k
 are the components of the Cartan coframe to be found from the 

system 
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Thus we have immediately both the infinitesimal generators and the 

coframe by identifying the right hand side of Eq. (26) with the standard dot 

product of SL(2, R) algebra: 
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and 
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In real terms: h = u + iv, k = e
i
, these last equations can be written as 
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Mention should be made that, in his original paper, Barbilian does not 

work with the above differential forms but with the absolute invariant 

differentials 
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or, in real terms, exhibiting a three-dimensional Lorentz structure of this space 
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The advantage of this representation is that it makes obvious the 

connection with the Poincaré representation of the Lobachevsky plane. Indeed, 

the metric here is 

 
2

22

2232221

v

)dv()du(
)

v
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
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This metric reduces to that of Poincaré in case where 
1
 = 0 which, as 

Barbilian noticed, defines the variable  as the „angle of parallelism‟ of the 

hyperbolic plane (the connection). In fact, recalling that in modern terms (du/v) 

represents the connection form of the hyperbolic plane (Flanders, 1989), the 

Eqs. (30) then represent a general Bäcklund transformation in that plane 

(Sasaki, 1979; Rogers and Schief, 2002). 

 

7. The Apolar Transport of Cubics 

 

In view of the importance that we revealed for the geometry of 

Lobachevsky in the classical Kepler problem, it becomes also important to 

know the meaning of the condition 
1
 = 0 for a family of cubic equations. It 

turns out that it expresses the so-called apolar transport of cubics (Barbilian, 

1938), whereby a certain cubic evolves in such a way that its roots remain 

always in a harmonic progression. This transport is defined by the condition that 

any root of the „transported‟ cubic is in a harmonic relation with any root of the 

„original‟ cubic, with respect to the other two remaining roots of the original 

cubic: 
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in all positive permutations of the indices i, j, k and for every l. Therefore each 

new root (yl) and each of the corresponding old ones (xi), are in harmonic range 

with respect to the other two old roots (xj, xk). Then it can be proved that the 

conditions from equation (32) boil down to the vanishing of the bilinear 

invariant of the two cubics, analogous to the bilinear invariant of the quadratics: 
 

 
30211203

baba3ba3ba   (33) 

 

Here am denote the coefficients of the original cubic, while bm denote 

the coefficients of the transported cubic. Obviously, this invariant is analogous 

to the one from the case of two quadratics, whose vanishing expresses the fact 

that their roots are in harmonic sequence. The geometry related to this invariant 

is century old (see (Burnside and Panton, 1960)) and Dan Barbilian seemed 

particularly fond of it (Barbilian, 1935), for he elaborated for a long while on its 

different aspects, especially related to the geometry of the triangle. As the 
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triangle comes nowadays in relation with the construction of skyrmions from 

instantons (Atiyah and Manton, 1989; Manton, 1989), from a point of view 

closely related to its geometry, it is therefore worth considering this connection, 

which turns out to be strictly related to the physics of continua. 

 Now, if the two cubics are infinitesimally close, then the condition of 

their transport by involution reduces to 
 

 0daadaa3daa3daa
30211203
  (34) 

 

Using here the Eqs. (15) above for the coefficients, the condition of 

apolar transport of the cubics amounts to 
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As the cubics are asumed to have distinct roots, this condition is 

satisfied if, and only if, the differential form Ω
1
 is null. Therefore the 

parallel transport of the hyperbolic plane actually represents the apolar 

transport of the cubics. 

 This way, the vectors represented by the real eigenvalues of a certain 

matrix, have a sure physical interpretation in the framework of the classical 

theory of Kepler motion. Assume, for the sake of exemplification a hydrogen 

atom: it is described by a single Kepler motion. We have seen that the nuclear 

matter in such representation can be characterized by a complex number 

depending on the eccentricity and the orientation of the orbit. This complex 

number can be assumed to represent a particular state of stress inside nucleus, 

given by Eqs. (24) above. The eigenvalues of stress are then given by Barbilian 

formulas using the gauge freedom. However, insofar as they are supposed to be 

measured values themselves, they reveal an outstanding meaning of the root of 

Hessian: it is the (complex) parameter of a Cauchy distribution. 

 
8. Peter McCullagh’s Observation on Cauchy Statistics 

 

Peter McCullagh has noticed a curious property of the one-dimensional 

Cauchy distribution, which is related to the benefit of a complex 

parameterization of this distribution (McCullagh, 1996). The parameters of a 

statistical distribution are usually taken as real, but McCullagh shows a clear 

advantage of representing them in a complex form, at least when it comes to 

Cauchy distribution. He starts with the fact that this distribution for a single 

variate X can be written in the form 
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where θ is the „complex parameter‟ of the distribution. The real part of this 

parameter gives the location of data, while the imaginary part roughly 

characterizes the spread of the distribution. One knows that this class of 

distributions is closed with respect to the homographic transformation of the 

variable: any linear fractional transform of X has also a Cauchy distribution. 

But the complex representation of the parameter brings to light one of the most 

important consequences of this theorem: if X belongs to the Cauchy class with 

the complex parameter θ, i.e. symbolically X ≈ C(θ), then we have 
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This property allows us to give efficient estimators for the complex 

parameter θ, based on the principle of maximum likelihood. 

 As a rule, the likelihood function used in estimations is simply the 

product of the values of the probability density for the different measured values 

of X. In taking the maximum likelihood with respect to parameters, it would be 

therefore appropriate to work with the logarithm of the likelihood, and this is 

what practically happens. For instance if one measures two values of X having 

the probability density (35), say x1 and x2, the likelihood function constructed 

based on this information is simply: 
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The likelihood is maximum with respect to θ when the derivatives of 

this function with respect to θ1 and θ2 are null. In terms of the log-likelihood, 

which is a lot easier to handle, we then have: 
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In view of the fact that 
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where the sumation extends over the two measured values and a star denotes 

complex conjugation, the two Eq. (38) become: 
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Therefore the sum here is a purely imaginary number, as we assume 

that the values xi are real. The second one of these equation shows that 
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If we sum up here and clear the denominators, we get 
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Solving this equation shows what one already knows well about the 

Cauchy distribution. First, with the information of only two measured values we 

cannot have an estimation for the mean; it can be any value between the two 

measured ones. As to the variance estimator, it is also indeterminate, but this is 

quite a natural characteristic, so to speak, of this type of repartition, because it 

has no finite moments of higher order. 

 At this point we can easily see the advantage of Eq. (36): it shows that 

the best determination of the Cauchy distribution involves just as many 

measured values of X, as the determination of a real linear-fractional or Möbius, 

in terms of McCullagh, transformation. Therefore we need to have three 

measurements of the statistical variable X, in order to determine a Cauchy 

distribution the best possible way. The general estimator will then be calculated 

from a particularly convenient Cauchy distribution through a well-defined 

transformation. Let us do some calculations. 

 In Eqs. (40) and (41) nothing changes, except the fact that the sum 

should be now performed on three values of X, say x1, x2, x3, instead of two. So, 

instead of (40) we have 
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and instead of (41) we have 
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as well as the complex conjugate of this equation. Now, the direct calculation of 

the estimators for θ1 and θ2 is rather tedious. Nevertheless, we can simplify it, 

using the property (36), and choosing three particular values for X, say –1, 0,1, 

and calculate the estimator of θ for them; we then take the homographic 

transform of this estimator through the homography that carries –1, 0,1, into the 
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values x1, x2, x3 of X. Indeed such a real homography is well determined. Let us 

consider that the values (x1, x2, x3) do corespond to the values (–1, 0,1) in this 

order. If the matrix of this homography has the entries a, b, c, d, then we can 

find it up to a normalization factor from the system of equations 
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This gives 
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The problem is now to find the estimator θ for the particular values (–1, 0,1). 

This can be easily done from Eq. (44) and its complex conjugate, which give the 

system 

 13;0 2

21
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Therefore, in this particular case we have simply i/(3) as an estimation 

for the parameter θ: it is purely imaginary. The estimator according to arbitrary 

data (x1, x2, x3) will then be obtained through the homography given by Eq. (46): 
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In real terms we have: 
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Therefore, the complex estimator of the Cauchy distribution is in close 

relationship with the Hessian of the cubic having the roots (x1, x2, x3). More to 

the point it is the root of that Hessian. Indeed, in terms of the roots of a cubic 

equation its Hessian is: 
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and its roots are θ above and its complex conjugate. The expression from Eq. (49) 

are the real and imaginary parts of these roots. Even more, the sum and the 

product of the two complex estimators are given by the mean and the standard 

deviation of the three values, with respect to the system of probabilities: 
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which they determine quite naturally. 

In our statistical interpretation, the root of the Hessian is the parameter 

of a Cauchy distribution. The roots of the corresponding cubic are three 

measurements of the Cauchy variate, that give the most reliable estimate of the 

parameter. The problem with this representation of the connection between 

cubic and its Hessian is that the Cauchy distribution is referring to a one-

dimensional variate. However, everything gets in order if we take the Cauchy 

density of probability as a marginal distribution of a Gaussian in plane. 

 

9. Conclusions 

 

The main conclusions of the present paper are the following: 

i) Some meanings and notations for every binary cubic are presented; 

ii) The algebra of the cubic equation is formulated; 

iii) In the algebra of the cubic equation, an external gauge factor is 

established and a physical interpretation is given; 

iv) Our physical interpretation leads us to Novozhilov‟s statistics and 

the specification of Hessian; 

v) Concentrating on the pure mathematical side of the problem, a 

Barbilian differential geometry is obtained; 

vi) theA correlation between the apolar transport of cubics and a Levy-

Civita parallel transport in Lobachevsky‟s plane are established; 

vii) Peter McCullagh‟s observations on Cauchy Statistics are discussed; 

viii) All our findings can be applied to other non-linear models, such as 

the well-known Kuznetsov (Kuznetsov et al., 1994) model for tumor growth. 
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ASUPRA UNEI GEOMETRII FIZICE ȘI NOI CONEXIUNI STATISTICE 

 

(Rezumat)  

 

În prezenta lucrare se descrie acțiunea unei matrici reale 2x2. Este o acțiune 

simplă tranzitivă, ce caracterizează un etalon propriu, conectat la matrici ce pot 

reprezenta tensiuni ale unui mediu continuu. Geometria compatibilă cu acest etalon este 

o generalizare tridimensională a geometriei hiperbolice plane. În termeni reali, această 

geometrie este una de tip Lorentz. Mai mult, sunt prezentate interpretări fizice ale 

acestui model și, în special, pentru unghiul etalon. Poate fi observată o conexiune 

puternică între acest model și cel al lui Kuznetsov privind creșterea tumorală. 
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